Układ scalony [historia i autorzy]

Układ scalony (ang. integrated circuit, chip, potocznie po polsku kość) – zminiaturyzowany układ elektroniczny zawierający w swym wnętrzu od kilku do setek milionów podstawowych elementów elektronicznych, takich jak tranzystor, dioda półprzewodnikowa, opornik i kondensator.

Spis treści

Historia

Prekursorem współczesnych układów scalonych była wyprodukowana w 1926 lampa próżniowa Loewe 3NF zawierająca wewnątrz jednej bańki trzy triody (dwie sygnałowe i jedną głośnikową), dwa kondensatory i cztery rezystory, całość była przeznaczona do pracy jako jednoobwodowy radioodbiornik reakcyjny.

Pierwszą osobą która opracowała teoretyczne podstawy układu scalonego był angielski naukowiec Geoffrey Dummer, nie udało mu się jednak zbudować pracującego układu. W 1958 Jack Kilby z Texas Instruments i Robert Noyce z Fairchild Semiconductor niezależnie od siebie zaprojektowali i zbudowali działające modele układów scalonych. Kilby zademonstrował swój wynalazek 12 września 1958 (za co otrzymał Nagrodę Nobla z fizyki w 2000), Noyce zbudował swój pierwszy układ scalony około pół roku później.

Budowa

Zwykle zamknięty w hermetycznej obudowie – szklanej, metalowej, ceramicznej lub wykonanej z tworzywa sztucznego.

Ze względu na sposób wykonania układy scalone dzieli się na główne grupy:

  • monolityczne, w których wszystkie elementy, zarówno elementy czynne jak i bierne, wykonane są w monokrystalicznej strukturze półprzewodnika
  • hybrydowe – na płytki wykonane z izolatora nanoszone są warstwy przewodnika oraz materiału rezystywnego, które następnie są wytrawiane, tworząc układ połączeń elektrycznych oraz rezystory. Do tak utworzonych połączeń dołącza się indywidualne, miniaturowe elementy elektroniczne (w tym układy monolityczne). Ze względu na grubość warstw rozróżnia się układy:
    • cienkowarstwowe (warstwy ok. 2 mikrometrów)
    • grubowarstwowe (warstwy od 5 do 50 mikrometrów)

Większość stosowanych obecnie układów scalonych jest wykonana w technologii monolitycznej.

Ze względu na stopień scalenia występuje, w zasadzie historyczny, podział na układy:

  • małej skali integracji (SSI – small scale of integration)
  • średniej skali integracji (MSI – medium scale of integration)
  • dużej skali integracji (LSI – large scale of integration)
  • wielkiej skali integracji (VLSI – very large scale of integration)
  • ultrawielkiej skali integracji (ULSI – ultra large scale of integration)

Ponieważ w układach monolitycznych praktycznie wszystkie elementy wykonuje się jako tranzystory, odpowiednio tylko przyłączając ich końcówki, dlatego też często mówi się o gęstości upakowania tranzystorów na mm².

W dominującej obecnie technologii wytwarzania monolitycznych układów scalonych (technologia CMOS) często używanym wskaźnikiem technicznego zaawansowania procesu oraz gęstości upakowania elementów układów scalonych jest minimalna długość kanału tranzystora (patrz Tranzystor polowy) wyrażona w mikrometrach lub nanometrach – długość kanału jest nazywana rozmiarem charakterystycznym i im jest on mniejszy, tym upakowanie tranzystorów oraz ich szybkość działania są większe. W kolejnych generacjach układów scalonych jest on sukcesywnie zmniejszany. W roku 2005 wdrożono do masowej produkcji układy wykonane w technologii 65 nm, w 2008 r. Intel wyprodukował pierwszy procesor w technologii 45 nm, w 2011 w ofercie Intela pojawiły się procesory w technologii 32 nm (mikroarchitektury Sandy Bridge). W 2012 Intel wprowadził do swojej oferty pierwsze procesory z linii Ivy Bridge produkowane w technologii 22 nm.

Zarejestrowane topografie układów scalonych podlegają ochronie, przy czym według prawa własności przemysłowej układem scalonym jest wytwór przestrzenny, utworzony z elementów z materiału półprzewodnikowego tworzącego ciągłą warstwę, ich wzajemnych połączeń przewodzących i obszarów izolujących, nierozdzielnie ze sobą sprzężonych, w celu spełniania funkcji elektronicznych.

Technologia planarna

W procesie produkcji monolitycznego układu scalonego można wyróżnić ok. 350 operacji technologicznych, poniżej zostanie przedstawiony tylko zarys czynności koniecznych do wyprodukowania układu.

  • Wytworzenie podłoża:
    • Z pręta (walca) monokrystalicznego półprzewodnika wycinane są piłą diamentową plastry (dyski) o grubości kilkuset mikrometrów.
    • Krawędź plastra jest ścinana, by możliwe było określenie jego orientacji w dalszych etapach.
    • Plaster następnie podlega szlifowaniu oraz polerowaniu stając się podłożem dla układów scalonych.
  • Proces epitaksji
    • Na podłożu wytwarzana jest cienka warstwa epitaksjalna półprzewodnika o przeciwnym typie przewodnictwa niż podłoże. Warstwa ta ma grubość kilka-kilkadziesiąt mikrometrów i charakteryzuje się dużą jednorodnością i gładkością powierzchni.
  • Maskowanie – celem tego etapu jest wytworzenie maski, która umożliwi selektywne domieszkowanie warstwy epitaksjalnej
    • Warstwa epitaksjalną jest utleniana – na jej powierzchni wytwarza się cienka warstwa dwutlenku krzemu – warstwa maskująca; jej grubość wynosi mikrometr lub mniej, nawet kilka warstw atomów. Dwutlenek krzemu charakteryzuje się dużą wytrzymałością mechaniczną oraz chemiczną, a także dużą rezystancją.
    • W warstwie maskującej wykonywane są otwory. Istnieją dwie techniki:
      • Fotolitografia:
        • na warstwę maskującą nakładana jest emulsja światłoczuła
        • nakładana jest maska fotograficzna
        • następuje naświetlenie światłem ultrafioletowym (wysoka częstotliwość ultrafioletu pozwala uzyskać wysoką rozdzielczość)
        • emulsja w miejscach naświetlonych podlega polimeryzacji
        • emulsja niespolimeryzowana zostaje wypłukana
        • dwutlenek krzemu w miejscach odsłoniętych jest wytrawiany, odsłaniając fragmenty warstwy epitaksjalnej
        • na końcu pozostała emulsja jest usuwana (chemicznie albo mechanicznie)
      • Wycinanie wiązką elektronową
        • Precyzyjnie sterowana wiązka elektronów wycina w dwutlenku krzemu otwory. Jest to technika bardziej precyzyjna, ale droższa niż fotolitografia.
  • Domieszkowanie
    • Odsłonięte części warstwy epitaksjalnej są domieszkowane. Robi się to dwiema metodami:
      • Dyfuzja domieszek – w wysokiej temperaturze (ok. 1200 stopni) domieszki niesione przez gaz szlachetny dyfundują w odsłonięte miejsca półprzewodnika; można bardzo precyzyjnie określić koncentrację nośników i głębokość domieszkowania. Dyfuzja domieszek jest powolnym procesem.
      • Implantacja jonów – zjonizowane domieszki są przyspieszane i "wbijane" w półprzewodnik. Proces jest szybki i precyzyjny, ale drogi.
  • Wykonanie połączeń
    • Całość jest ponownie maskowana dwutlenkiem krzemu.
    • W tlenku wykonywane są niezbędne otwory połączeniowe.
    • Napylane są warstwy przewodzące. Jako przewodnik stosuje się aluminium lub miedź.
  • Montaż
    • Cięcie podłoża na indywidualne układy piłą diamentową lub laserem.
    • Indywidualne układy są testowane testerem ostrzowym.
    • Wykonywane są połączenia struktury z wyprowadzeniami zewnętrznymi za pomocą cienkich drucików aluminiowych lub złotych.

Producenci

Zgodnie z badaniami w 2007 roku, największym producentem układów scalonych jest firma Intel. Kolejne miejsca zajmują: Samsung, Toshiba i Texas Instruments.

W Polsce monolityczne układy scalone produkowane były w zlikwidowanym w czasie procesu prywatyzacji w Polsce (transformacja systemowa w Polsce) w 1994 r. CEMI.

Pokaż ten artykuł na Wikipedia.pl

Tekst udostępniany na licencji Creative Commons: uznanie autorstwa, na tych samych warunkach, z możliwością obowiązywania dodatkowych ograniczeń. Zobacz szczegółowe informacje o warunkach korzystania.
Zasady zachowania poufności. O Wikipedii. Korzystasz z Wikipedii tylko na własną odpowiedzialność. Materiał pochodzący z Wikipedii został zmodyfikowany poprzez ograniczenie liczby przypisów. Wikipedia® is a registered tradmark of the Wikimedia Foundation.

Kategorie dla tego artykułu