Prawo powszechnego ciążenia [historia i autorzy]

Prawo powszechnego ciążenia, zwane także prawem powszechnego ciążenia Newtona, głosi, że każdy obiekt we wszechświecie przyciąga każdy inny obiekt z siłą, która jest wprost proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna do kwadratu odległości między ich środkami. Jest to ogólne prawo fizyczne, bazujące na empirycznych obserwacjach Newtona, które nazwał on indukcją (wpływem). Wchodzi ono w skład podstaw mechaniki klasycznej i zostało sformułowane w pracy sir Isaaca Newtona pt.: Philosophiae naturalis principia mathematica, opublikowanej po raz pierwszy 5 lipca 1687 r. W języku współczesnym prawo to brzmi następująco:

Między dowolną parą ciał posiadających masy pojawia się siła przyciągająca, która działa na linii łączącej ich środki, a jej wartość rośnie z iloczynem ich mas i maleje z kwadratem odległości.

Matematycznie związek ten wyraża się wzorem:

gdzie:
– stała grawitacji,
– masa pierwszego ciała,
– masa drugiego ciała,
– wektor łączący środki mas obu ciał, a
jest długością tego wektora,
jest wersorem (wektorem jednostkowym) () osi łączącej środki mas obu ciał.
Siła jest wektorem, a jej wartość (długość tego wektora ) jest równa:

W swym dziele Newton przedstawił spójną teorię grawitacji, opisującą zarówno spadanie obiektów na ziemi, jak i ruch ciał niebieskich. Angielski fizyk oparł się na zaproponowanych przez siebie zasadach dynamiki oraz prawach Keplera dotyczących odległości planety od Słońca.

Dla uproszczenia załóżmy, że dwie planety poruszają się po kołowej orbicie. Prawo Keplera przyjmie dla nich postać:

gdzie: , – promienie orbit, , – okresy obiegu planet.

Zgodnie z rachunkiem wektorowym ciało poruszające się po okręgu jest poddane przyspieszeniu:

gdzie: – przyspieszenie, – prędkość, – promień okręgu, co według drugiej zasady dynamiki oznacza, że musi działać na nie siła dośrodkowa:

gdzie to masa bezwładnościowa ciała.

Przy ruchu planet ta siła dośrodkowa jest równa sile grawitacyjnej . Prędkość orbitalna może być wyliczona jako:

Jeżeli podstawimy zależność (4) do (3) to otrzymamy:

Stosunek sił grawitacyjnych dla planet można rozpisać jako:

Jeżeli teraz do równania (5) podstawimy (1) to pozbędziemy się okresów obiegu:

Otrzymana zależność oznacza tyle, że stosunek sił grawitacyjnych jest proporcjonalny do odwrotności stosunku kwadratów odległości. Jeżeli planeta jest dwa razy dalej od Słońca, to siła grawitacji jest cztery razy mniejsza. Kiedy ciało ma dwa razy mniejszą masę, wtedy siła jest dwa razy mniejsza.

Newton uznał, że ta sama siła powoduje ruch planet po orbitach oraz spadanie jabłka z drzewa. W ten sposób ten wielki fizyk położył podwaliny pod mechanikę klasyczną. W tym ujęciu grawitacja jest siłą, z jaką oddziałują na siebie wszelkie ciała obdarzone masą.

Masy grawitacyjne i nie muszą być równe masom bezwładnościowym występującym w II zasadzie dynamiki Newtona. Zaobserwowana równość tych wartości oznacza, że ruch ciała w polu grawitacyjnym nie zależy od jego masy. Postulat ten jako pierwszy wysunął Galileusz. Równoznaczność mas bezwładnościowych i grawitacyjnych, zupełnie przypadkowa z punktu widzenia mechaniki klasycznej, jest podstawą ogólnej teorii względności.

Równoważność masy bezwładnościowej i grawitacyjnej czekała na potwierdzenie eksperymentalne aż do roku 1798. Angielski fizyk Henry Cavendish jako pierwszy wykonał doświadczenia z wykorzystaniem oscylujących mas, dzięki którym określił wartość stałej grawitacyjnej G z niepewnością 1%. W tym samym eksperymencie potwierdził też równoznaczność masy grawitacyjnej i bezwładnościowej.

Stała grawitacji została uznana za jedną z podstawowych stałych fizycznych. Z pomiarów wynika, że jej wartość wynosi:

Pole grawitacyjne jest polem potencjalnym. Praca wykonywana w tym polu nie zależy od drogi po jakiej przemieszczają się ciała, tylko od różnicy potencjałów w punkcie początkowym i końcowym. Możliwe jest zatem zdefiniowanie funkcji U, która opisuje potencjał pola grawitacyjnego. Spełnia ona następującą zależność:

Korzystając z tego równania można obliczyć energię potencjalną pola grawitacyjnego.

Pokaż ten artykuł na Wikipedia.pl

Tekst udostępniany na licencji Creative Commons: uznanie autorstwa, na tych samych warunkach, z możliwością obowiązywania dodatkowych ograniczeń. Zobacz szczegółowe informacje o warunkach korzystania.
Zasady zachowania poufności. O Wikipedii. Korzystasz z Wikipedii tylko na własną odpowiedzialność. Materiał pochodzący z Wikipedii został zmodyfikowany poprzez ograniczenie liczby przypisów. Wikipedia® is a registered tradmark of the Wikimedia Foundation.

Kategorie dla tego artykułu