Iloczyn mieszany [historia i autorzy]

Iloczyn mieszany – w matematyce działanie określone dla trzech wektorów trójwymiarowej przestrzeni euklidesowej jako iloczyn skalarny jednego z nich przez iloczyn wektorowy dwóch pozostałych. Jeśli są dowolnymi wektorami to ich iloczyn mieszany definiuje się jako

przy czym zachodzą również równości

co oznacza, że każda z nich może zostać użyta w definicji (nawiasy można pominąć, gdyż wykonanie iloczynu skalarnego jako pierwszego oznaczałoby konieczność obliczenia iloczynu wektorowego skalara przez wektor, które nie jest określone).

Za pomocą symbolu Leviego-Civity iloczyn mieszany można określić wzorem (w konwencji sumacyjnej Einsteina)

Interpretacja geometryczna

W dodatnio zorientowanym układzie współrzędnych iloczyn mieszany opisuje objętość równoległościanu rozpiętego przez dane trzy wektory. Jeśli orientacja przestrzeni nie jest narzucona, to wspomniana objętość również jest zorientowana w tym sensie, iż zależy ona od kolejności wektorów (parzystości ich permutacji). Zmiana orientacji powoduje zmianę znaku iloczynu, w związku z tym iloczyn mieszany nie jest skalarem, a raczej pseudoskalarem (iloczyn wektorowy jest pseudowektorem, a iloczyn skalarny dwóch wektorów jest skalarem, zaś iloczyn skalarny pseudowektora i wektora jest pseudoskalarem). Wynika stąd także, że zmiana kolejności wektorów w iloczynie wektorowym zmienia znak iloczynu mieszanego (iloczyn skalarny jest przemienny i nie wpływa na znak iloczynu mieszanego),

Iloczyn mieszany można traktować jako jeszcze jedno oznaczenie wyznacznika: iloczyn mieszany trzech wektorów jest równy ich wyznacznikowi bądź wyznacznikowi macierzy stopnia 3 z wektorami zapisanymi w niej wierszowo bądź kolumnowo (transponowanie macierzy nie zmienia wyznacznika),

gdzie wielkość ta jest niezmiennicza ze względu na obroty. Stąd iloczyn mieszany ma wszystkie własności wyznacznika, w tym wieloliniowość i alternacyjność; jest więc unormowaną formą objętości.

Wektory są współpłaszczyznowe wtedy i tylko wtedy, gdy ich iloczyn mieszany jest równy zeru, gdyż „równoległościan” przez nie wyznaczony jest wtedy płaski (zdegenerowany) i nie ma objętości. Ponadto

Zachodzi także następująca własność:

Iloczyn zewnętrzny

W algebrach zewnętrznej i geometrycznej iloczyn zewnętrzny dwóch wektorów jest dwuwektorem, czyli zorientowanym elementem płaszczyzny, podczas gdy iloczyn zewnętrzny trzech wektorów to trójwektor, czyli zorientowany element objętości; są to naturalne uogólnienia wektora jako zorientowanego elementu prostej. Dla danych wektorów ich iloczyn zewnętrzny

jest trójwektorem, tzn. pseudoskalarem dualnym do iloczynu mieszanego, o wartości równej iloczynowi mieszanemu (nawiasy pominięto, ponieważ iloczyn zewnętrzny jest łączny, choć nie jest przemienny). Trójwektorowi odpowiada równoległościan rozpięty przez wektory gdzie dwuwektorom odpowiadają równoległoboczne ściany równoległościanu.

Pokaż ten artykuł na Wikipedia.pl

Tekst udostępniany na licencji Creative Commons: uznanie autorstwa, na tych samych warunkach, z możliwością obowiązywania dodatkowych ograniczeń. Zobacz szczegółowe informacje o warunkach korzystania.
Zasady zachowania poufności. O Wikipedii. Korzystasz z Wikipedii tylko na własną odpowiedzialność. Materiał pochodzący z Wikipedii został zmodyfikowany poprzez ograniczenie liczby przypisów. Wikipedia® is a registered tradmark of the Wikimedia Foundation.

Kategorie dla tego artykułu